

(Fluids) الموائع

- Three (common) phases of matter:
- **1. Solid:** Maintains shape & size (approx.), even under large forces.
- **2. Liquid:** No fixed shape. Takes shape of container.
- **3. Gas:** Neither fixed shape, nor fixed volume. Expands to fill container.
 - Lump 2. & 3. into category of *FLUIDS*.
 - **Fluids:** Have the ability to flow.

المائع لديه القدرة على الانسياب.

Density & Specific Gravity الکثافة Density, ρ (lower case Greek rho, NOT p!) of object, mass M & volume V:

كثافة المادة نسبة الى كثافة الماء $ho \equiv ({
m M/V})$ (kg/m³ = 10⁻³ g/cm³)

• **Specific Gravity (SG):** Ratio of density of a substance to density of water.

 $\rho_{water} = 1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$ See table!!

$\rho = (M/V)$ SG = $(\rho/\rho_{water}) = 10^{-3}\rho$

$$(\rho_{\text{water}} = 10^3 \text{ kg/m}^3)$$

TABLE 10–1 Densities of Substances [†]		Substance	Density, ρ (kg/m ³)
Substance	Density, a (kg/m ³)	Liquids Water (4°C)	1.00×10^{3}
Solids	<i>p</i> (kg/m)	Blood, plasma	1.00×10^{3} 1.03×10^{3}
Aluminum	2.70×10^{3}	Blood, whole	1.05×10^{3}
Iron and Steel	7.8×10^{3}	Mercury	1.023×10^{-1} 13.6 × 10 ³
Copper	8.9×10^{3}	Alcohol, ethyl	0.79×10^{3}
Lead	11.3×10^{3}	Gasoline	0.68×10^{3}
Gold	19.3×10^{3}	Gases	
Concrete	2.3×10^{3}	Air	1.29
Granite	2.7×10^3	Helium	0.179
Wood (typical)	$0.3-0.9 \times 10^{3}$	Carbon dioxide	1.98
Glass, common	$2.4-2.8 \times 10^{3}$	Water (steam)	0.598
Ice	0.917×10^{3}	(100°C)	
Bone	$1.7-2.0 \times 10^{3}$	[†] Densities are given at 0	°C and 1 atm pres-

sure unless otherwise specified.

• Note:
$$\rho = (M/V)$$

$\Rightarrow \text{ Mass of body, density } \rho, \text{ volume V is}$ $\mathbf{M} = \rho \mathbf{V}$

$\Rightarrow Weight of body, density \rho, volume V is$ $Mg = \rho Vg$

Pressure in Fluids

• Definition: Pressure = Force/Area

F applied <u>perpendicular</u> to A SI units: N/m^2 $1 N/m^2 = 1 Pa$ (Pascal)

P 15 1 ANY SURFACE

> FIGURE 10-1 Pressure is the same in every direction in a fluid at a given depth; if it weren't, the fluid would be in motion.

FLUD AT REST

EXPERIMENTAL FACT: FLUID AT REST EXERTS A PRESSURE IN ALC DIRECTIONS.

• **P** is \perp any fluid surface: $\mathbf{P} = (\mathbf{F}_{\perp} / \mathbf{A})$ **FIGURE 10-2** If there were a component of force parallel to the solid surface, the liquid would move in response to it; for a liquid at rest, $F_{\parallel} = 0$.

 Experimental Fact: Pressure depends on depth. Consider a fluid at rest. Depth h below surface:

FIGURE 10-3 Calculating the At rest $\Rightarrow \sum F_y = 0$ pressure at a depth *h* in a liquid.

At rest $\Rightarrow \sum \Gamma_y = 0$ or, $\mathbf{F} - \mathbf{mg} = 0 \Rightarrow \mathbf{F} = \mathbf{mg}$ $\mathbf{F} = \mathbf{mg} = \rho \mathbf{Vg}, \mathbf{V} = \mathbf{Ah}$ $\Rightarrow \mathbf{F} = \rho \mathbf{Ahg}$ $\Rightarrow \mathbf{P} \equiv \mathbf{F}/\mathbf{A} = \rho \mathbf{gh}$ Pressure at depth **h** (fluid at rest)

 $\mathbf{P} = \rho \mathbf{g} \mathbf{h}$

• Depth **h** below surface of liquid: $\mathbf{P} = \rho \mathbf{g} \mathbf{h}$ \Rightarrow Change in pressure with change in *depth*: يتغير الضغط بتغير العمق $\Delta \mathbf{P} = \rho \mathbf{g} \Delta \mathbf{h}$ (for a fluid *at rest* only!) Surface. $P_i = Pgh_i$ $\Delta \mathbf{P} = \mathbf{P}_2 - \mathbf{P}_1$ $= \rho \mathbf{g}(\mathbf{h}_2 - \mathbf{h}_1)$ ρg∆h Pz=pghz

Example

Atmospheric Pressure

- Earth's atmosphere: A fluid.
 - But doesn't have a fixed top "surface"!
- Change in height Δh above Earth's surface:
- \Rightarrow Change in pressure: $\Delta \mathbf{P} = \rho \mathbf{g} \Delta \mathbf{h}$
- Sea level: $P_A \equiv 1.013 \times 10^5 \text{ N/m}^2$

$= 101.3 \text{ kPa} \equiv 1 \text{ atm}$

- Old units: 1 bar = $1.00 \times 10^5 \,\text{N/m^2}$

• *Physics:* Cause of pressure at any height: Weight of air above that height!

Gauge Pressure

• Pressure gauges (like tire gauges, etc.) measure difference between atmospheric pressure P_A & internal pressure (of tire, for example).

• Gauge pressure: $P_G = P - P_A$

Conceptual Example

P = ? Pressure on A: $\mathbf{P}_{\mathbf{down}} = \mathbf{P} + \mathbf{P}_{\mathbf{mg}}$ $\mathbf{P}_{up} = \mathbf{P}_{A}$ At rest $\Rightarrow \sum \mathbf{F}_{\mathbf{v}} = \mathbf{0}$ $\Rightarrow P_{up} = P_{down}$ or $\mathbf{P}_{\mathbf{A}} = \mathbf{P} + \mathbf{P}_{\mathbf{mg}}$ \Rightarrow **P** = **P**_A - **P**_{mg} < **P**_A So, air pressure holds fluid in straw!

Section 10-5: Pascal's Principle

• Experimental fact:

An external pressure P applied to confined fluid increases the pressure throughout by P

= <u>Pascal's Principle</u>

• Simple example: Water in a lake (at rest). At depth h below surface, pressure is

 $\mathbf{P} = \mathbf{P}_{\mathbf{A}} + \rho \mathbf{g} \mathbf{h}$ ($\mathbf{P}_{\mathbf{A}}$ = atmospheric pressure)

Pascal's Principle

Section 10-6: Pressure Measurement

• Many types of pressure measurement devices. Most use **P** - $P_A = \rho gh = P_G = gauge$ pressure

Various Pressure Units

• Gauge Pressure: $P_A = \rho g h$

⇒ *Alternate unit of pressure:* Instead of calculating *p*gh, common to use standard liquid (mercury, Hg or alcohol, where ρ is standard) & measure **h** \Rightarrow **Quote pressure in length units**! For example: "millimeters of mercury" ≡ mm Hg For $h = 1 \text{ mm Hg} = 10^{-3} \text{ m Hg}$ $\rho_{\text{mercury}} \text{ gh} = (1.36 \times 10^4 \text{ kg/m}^3) (9.8 \text{ m/s}^2)(10^{-3} \text{ m})$ $= 133 \text{ N/m}^2 = 133 \text{ Pa} \equiv 1 \text{ Torr}$ (another pressure unit!) mm Hg & Torr are not proper SI pressure units!

• About as many *pressure units* as there are measurement devices!!

TABLE 10-2 Conversion Factors Between Different Units of Pressure

In Terms of 1 Pa = 1 N/m^2	Related to 1 atm	
$1 \text{ atm} = 1.013 \times 10^5 \text{ N/m}^2$	$1 \text{ atm} = 1.013 \times 10^5 \text{ N/m}^2$	
$= 1.013 \times 10^5 \mathrm{Pa} = 101.3 \mathrm{kPa}$		
$1 \text{ bar} = 1.000 \times 10^5 \text{ N/m}^2$	1 atm = 1.013 bar	
$1 \text{ dyne/cm}^2 = 0.1 \text{ N/m}^2$	$1 \text{ atm} = 1.013 \times 10^6 \text{ dyne/cm}^2$	
$1 \text{ Ib/in}^2 = 6.90 \times 10^3 \text{ N/m}^2$	$1 \text{ atm} = 14.7 \text{ lb/in}^2$	
$1 \text{ lb/ft}^2 = 47.9 \text{ N/m}^2$	$1 \text{ atm} = 2.12 \times 10^3 \text{ lb/ft}^2$	
$1 \mathrm{cm} \cdot \mathrm{Hg} = 1.33 \times 10^3 \mathrm{N/m^2}$	1 atm = 76 cm-Hg	
$1 \text{ mm-Hg} = 133 \text{ N/m}^2$	1 atm = 760 mm-Hg	
$1 \text{ torr} = 133 \text{ N/m}^2$	1 atm = 760 torr	
$1 \text{ mm-H}_2 O (4^\circ C) = 9.81 \text{ N/m}^2$	$1 \text{ atm} = 1.03 \times 10^4 \text{ mm-H}_2\text{O} (4^\circ\text{C})$	

• **<u>Preferred (SI)</u>** unit: 1 Pa (Pascal) = 1 N/m^2

Mercury Barometer

• Weather reports: Barometric pressure (atmospheric pressure): 28-32 inches Hg

76 cm = 760 mm

= 29.29 inches

- When **h** = **760 mm**,
- $P = \rho_{\text{mercury}} \text{ gh} = 1.013 \times 10^5 \text{ N/m}^2$
- = 1 atm
- If use water

P = 1atm = ρ_{water} gh ⇒ h ≈ 10 m ≈ 30 feet! **FIGURE 10–8** Diagram of mercury barometer, when the air pressure is 76 cm-Hg.

Prob. 17: (A variation on Example)

Tank depth = 5 mPipe length = 110 mHill slope = 58°

Gauge Pressure **P**_G = ? Height water **H** shoots from broken pipe at bottom?

Height of water level in tank from house level: $\mathbf{h} = (5 + 110 \sin 58^{\circ}) = 98.3 \text{ m}$ $\mathbf{P}_{G} = \rho_{water} \mathbf{gh} = (1 \times 10^{3} \text{ kg/m}^{3})(9.8 \text{ m/s}^{2})(98.3 \text{ m}) = 9.6 \times 10^{5} \text{ N/m}^{2}$ Conservation of energy: $\mathbf{H} = \mathbf{h} = 98.3 \text{ m}$ (Neglects frictional effects, etc.)