د. عبدالله عبدالأمير حسين

الموائع (Fluids)

- Three (common) phases of matter:

1. Solid: Maintains shape \& size (approx.), even under large forces.
2. Liquid: No fixed shape. Takes shape of container.
3. Gas: Neither fixed shape, nor fixed volume. Expands to fill container.
Lump 2. \& 3. into category of FLUIDS. Fluids: Have the ability to flow.
المانع لايه الققرة على الانسياب.

Density \& Specific Gravity

الكثافة

- Density, $\boldsymbol{\rho}$ (lower case Greek rho, NOTp!) of object, mass $\mathbf{M} \&$ volume \mathbf{V} :

كثافة المادة نسبة الى كثافة الماء

$$
\rho \equiv(\mathbf{M} / \mathrm{V}) \quad\left(\mathrm{kg} / \mathrm{m}^{3}=10^{-3} \mathrm{~g} / \mathrm{cm}^{3}\right)
$$

- Specific Gravity (SG): Ratio of density of a substance to density of water.

$$
\rho_{\text {water }}=1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

See table!!

$$
\begin{aligned}
& \rho=(\mathrm{M} / \mathrm{V}) \quad \mathrm{SG}=\left(\rho / \rho_{\text {water }}\right)=10^{-3} \rho \\
& \left(\rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)
\end{aligned}
$$

Table 10-1
 Densities of Substances ${ }^{\dagger}$

Substance	Density, $\boldsymbol{\rho}\left(\mathbf{k g} / \mathbf{m}^{\mathbf{3}}\right)$
Solids	
Aluminum	2.70×10^{3}
Iron and Steel	7.8×10^{3}
Copper	8.9×10^{3}
Lead	11.3×10^{3}
Gold	19.3×10^{3}
Concrete	2.3×10^{3}
Granite	2.7×10^{3}
Wood (typical)	$0.3-0.9 \times 10^{3}$
Glass, common	$2.4-2.8 \times 10^{3}$
Ice	0.917×10^{3}
Bone	$1.7-2.0 \times 10^{3}$

Substance	Density, $\rho\left(\mathbf{k g} / \mathrm{m}^{3}\right)$
Liquids	
Water $\left(4^{\circ} \mathrm{C}\right)$	
Blood, plasma	1.00×10^{3}
Blood, whole	1.03×10^{3}
Sea water	1.025×10^{3}
Mercury	13.6×10^{3}
Alcohol, ethyl	0.79×10^{3}
Gasoline	0.68×10^{3}
Gases	
Air	1.29
Helium	0.179
Carbon dioxide	1.98
Water $($ steam $)$	0.598
\quad (i00 $\left.{ }^{\circ} \mathrm{C}\right)$	
Densities are given at $0^{\circ} \mathrm{C}$ and 1 atm pres-	
sure unless otherwise specified.	

- Note: $\rho=(\mathbf{M} / \mathrm{V})$
$\Rightarrow \quad$ Mass of body, density ρ, volume \mathbf{V} is

$$
\mathbf{M}=\rho \mathbf{V}
$$

\Rightarrow Weight of body, density ρ, volume \mathbf{V} is

$$
\mathbf{M g}=\rho \mathbf{V} \mathbf{g}
$$

Pressure in Fluids

- Definition: Pressure = Force/Area

$$
\mathbf{P} \equiv(\mathbf{F} / \mathbf{A})
$$

F applied perpendicular to \mathbf{A}
SI units: $\mathbf{N} / \mathbf{m}^{2}$
$1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~Pa}$ (Pascal)

P 15
\therefore ANY
surface

FIGURE 10-1 Pressure is the same in every direction in a fluid at a given depth; if it weren't, the fluid would be in motion.

FLUID AT REST
EXPERIMENTAL FACT: FLUID AT
REST EXERTS A PRESSURE IN ALL DIRECTIONS.

- \mathbf{P} is \perp any fluid surface: $\mathbf{P}=\left(\mathbf{F}_{\perp} / \mathbf{A}\right)$ FIGURE 10-2 If there were a component of force parallel to the solid surface, the liquid would move in response to it; for a liquid at rest, $F_{\|}=0$.

- Experimental Fact: Pressure depends on depth. Consider a fluid at rest. Depth h below surface: FIGURE 10-3 Calculating the At rest $\Rightarrow \sum \mathbf{F}_{\mathbf{y}}=\mathbf{0}$ pressure at a depth h in a liquid.

$$
\begin{aligned}
& \text { or, } \mathbf{F}-\mathbf{m g}=\mathbf{0} \Rightarrow \mathbf{F}=\mathbf{m g} \\
& \mathbf{F}=\mathbf{m g}=\rho \mathbf{V}, \mathbf{V}=\mathbf{A h} \\
& \Rightarrow \mathbf{F}=\rho A h g \\
& \Rightarrow \mathbf{P} \equiv \mathbf{F} / \mathbf{A}=\rho \mathrm{gh}
\end{aligned}
$$

Pressure at depth \mathbf{h} (fluid at rest)
$\mathbf{P}=\rho \mathrm{gh}$

- Depth \mathbf{h} below surface of liquid: $\mathbf{P}=\boldsymbol{\rho g h}$ \Rightarrow Change in pressure with change in
 $\Delta \mathbf{P}=\rho \mathbf{g} \Delta \mathbf{h}$ (for a fluid at rest only!)

Example

Atmospheric Pressure

- Earth's atmosphere: A fluid.
- But doesn't have a fixed top "surface"!
- Change in height $\Delta \mathbf{h}$ above Earth's surface:
\Rightarrow Change in pressure: $\Delta \mathbf{P}=\rho \mathbf{g} \Delta \mathbf{h}$
- Sea level: $\mathbf{P}_{\mathrm{A}} \equiv \mathbf{1 . 0 1 3} \times \mathbf{1 0}^{\mathbf{5}} \mathrm{N} / \mathbf{m}^{2}$ $=101.3 \mathrm{kPa} \equiv 1 \mathrm{~atm}$
- Old units: $\mathbf{1} \mathrm{bar}=1.00 \times \mathbf{1 0}^{5} \mathrm{~N} / \mathrm{m}^{2}$
- Physics: Cause of pressure at any height: Weight of air above that height!

Gauge Pressure

- Pressure gauges (like tire gauges, etc.) measure difference between atmospheric pressure $\mathbf{P}_{\mathbf{A}}$ \& internal pressure (of tire, for example).
- Gauge pressure: $\mathbf{P}_{\mathrm{G}}=\mathbf{P}-\mathbf{P}_{\mathrm{A}}$

Conceptual Example

$$
\mathbf{P}=\text { ? }
$$

Pressure on \mathbf{A} :

$$
\mathbf{P}_{\text {down }}=\mathbf{P}+\mathbf{P}_{\mathrm{mg}}
$$

$$
\mathbf{P}_{\mathrm{up}}=\mathbf{P}_{\mathrm{A}}
$$

$$
\text { At rest } \Rightarrow \sum \mathbf{F}_{\mathbf{y}}=\mathbf{0}
$$

$\Rightarrow \mathbf{P}_{\text {up }}=\mathbf{P}_{\text {down }}$ or $\mathbf{P}_{\mathrm{A}}=\mathbf{P}+\mathbf{P}_{\mathrm{mg}}$
$\Rightarrow \mathbf{P}=\mathbf{P}_{\mathrm{A}}-\mathbf{P}_{\mathrm{mg}}<\mathbf{P}_{\mathrm{A}}$ So, air pressure holds fluid in straw!

Section 10-5: Pascal's Principle

- Experimental fact:

An external pressure \mathbf{P} applied to confined fluid increases the pressure throughout by \mathbf{P}

$$
\equiv \text { Pascal's Principle }
$$

- Simple example: Water in a lake (at rest). At depth h below surface, pressure is $\mathbf{P}=\mathbf{P}_{\mathrm{A}}+\boldsymbol{\rho g h} \quad\left(\mathbf{P}_{\mathrm{A}}=\right.$ atmospheric pressure $)$

Pascal's Principle

Section 10-6: Pressure Measurement

- Many types of pressure measurement devices. Most use $\mathbf{P}-\mathbf{P}_{\mathrm{A}}=\boldsymbol{\rho g h}=\mathbf{P}_{\mathbf{G}}=$ gauge pressure

FIGURE 10-7 Pressure gauges: (a) open-tube manometer, (b) aneroid gauge, and (c) common tire pressure gauge.

(b) Aneroid gauge (used mainly for air pressure and then called an aneroid barometer)

(c) Tire gauge

Various Pressure Units

- Gauge Pressure: $\mathbf{P}_{\mathrm{A}}=\boldsymbol{\rho g h}$
\Rightarrow Alternate unit of pressure: Instead of calculating $\rho \mathrm{gh}$, common to use standard liquid (mercury, Hg or alcohol, where $\boldsymbol{\rho}$ is standard) \& measure \mathbf{h}
\Rightarrow Quote pressure in length units! For example:
"millimeters of mercury" $\equiv \mathbf{m m ~ H g}$
For $h=1 \mathbf{~ m m ~ H g}=10^{-3} \mathbf{~ m ~ H g}$
$\rho_{\text {mercury }} \mathrm{gh}=\left(1.36 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(10^{-3} \mathrm{~m}\right)$
$=133 \mathrm{~N} / \mathrm{m}^{2}=133 \mathrm{~Pa} \equiv 1$ Torr
(another pressure unit!)
$\mathbf{m m} \mathbf{H g} \& \mathbf{T o r r}$ are not proper SI pressure units!
- About as many pressure units as there are measurement devices!!

TABLE 10-2

Conversion Factors Between Different Units of Pressure

In Terms of $\mathbf{1 ~ P a}=\mathbf{1 N} / \mathrm{m}^{2}$		Related to $\mathbf{1} \mathrm{atm}$	
1 atm	$=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
	$=1.013 \times 10^{5} \mathrm{~Pa}=101.3 \mathrm{kPa}$		
1 bar	$=1.000 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=1.013 \mathrm{bar}$
$1 \mathrm{dyne} / \mathrm{cm}^{2}$	$=0.1 \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=1.013 \times 10^{6} \mathrm{dyne} / \mathrm{cm}^{2}$
$1 \mathrm{lb} / \mathrm{mn}^{2}$	$=6.90 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=14.7 \mathrm{lb} / \mathrm{in}^{2}$
$1 \mathrm{lb} / \mathrm{ft}^{2}$	$=47.9 \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=2.12 \times 10^{3} \mathrm{lb} / \mathrm{ft}^{2}$
$1 \mathrm{~cm}-\mathrm{Hg}$	$=1.33 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=76 \mathrm{~cm}-\mathrm{Hg}$
$1 \mathrm{~mm}-\mathrm{Hg}$	$=133 \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=760 \mathrm{~mm}-\mathrm{Hg}$
1 torr	$=133 \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=760 \mathrm{torr}$
$1 \mathrm{~mm}-\mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right)$	$=9.81 \mathrm{~N} / \mathrm{m}^{2}$	1 atm	$=1.03 \times 10^{4} \mathrm{~mm}-\mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right)$

- Preferred (SI) unit: $1 \mathbf{P a}($ Pascal $)=1 \mathbf{N} / \mathbf{m}^{2}$

Mercury Barometer

- Weather reports: Barometric pressure (atmospheric pressure): 28-32 inches $\mathbf{H g}$
$76 \mathrm{~cm}=760 \mathrm{~mm}$
$=29.29$ inches
When $\mathbf{h}=760 \mathrm{~mm}$,
$\mathbf{P}=\rho_{\text {mercury }} \mathbf{g h}=$ $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$=1 \mathrm{~atm}$
- If use water
$\mathrm{P}=1 \mathrm{~atm}=\rho_{\text {water }} \mathrm{gh}$
$\Rightarrow \mathrm{h} \approx 10 \mathrm{~m} \approx 30$ feet!

FIGURE 10-8 Diagram of mercury barometer, when the ail pressure is $76 \mathrm{~cm}-\mathrm{Hg}$.

Prob. 17: (A variation on Example)

Tank depth $=\mathbf{5} \mathbf{~ m}$ Pipe length $=\mathbf{1 1 0} \mathbf{~ m}$ Hill slope $=\mathbf{5 8}^{\circ}$

Gauge Pressure $\mathbf{P}_{\mathbf{G}}=$?
Height water \mathbf{H} shoots from broken pipe at bottom?

$$
\text { FIGURE } 10-47 \text { Problem } 17 .
$$

Height of water level in
tank from house level: $\mathbf{h}=\left(\mathbf{5}+\mathbf{1 1 0} \sin 58^{\circ}\right)=\mathbf{9 8 . 3} \mathbf{~ m}$
$P_{G}=\rho_{\text {water }} \mathrm{gh}=\left(1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(\mathbf{9 8 . 3 ~ m})=9.6 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Conservation of energy: $\mathbf{H}=\mathbf{h}=\mathbf{9 8 . 3} \mathbf{~ m}$
(Neglects frictional effects, etc.)

